The SMC9 Is a Highly Accurate Approximation to the Ancestral Recombination Graph

نویسندگان

  • Peter R. Wilton
  • Shai Carmi
  • Asger Hobolth
چکیده

Two sequentially Markov coalescent models (SMC and SMC9) are available as tractable approximations to the ancestral recombination graph (ARG). We present a Markov process describing coalescence at two fixed points along a pair of sequences evolving under the SMC9. Using our Markov process, we derive a number of new quantities related to the pairwise SMC9, thereby analytically quantifying for the first time the similarity between the SMC9 and the ARG. We use our process to show that the joint distribution of pairwise coalescence times at recombination sites under the SMC9 is the same as it is marginally under the ARG, which demonstrates that the SMC9 is, in a particular well-defined, intuitive sense, the most appropriate first-order sequentially Markov approximation to the ARG. Finally, we use these results to show that population size estimates under the pairwise SMC are asymptotically biased, while under the pairwise SMC9 they are approximately asymptotically unbiased.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The SMC' is a highly accurate approximation to the ancestral recombination graph.

Two sequentially Markov coalescent models (SMC and SMC') are available as tractable approximations to the ancestral recombination graph (ARG). We present a Markov process describing coalescence at two fixed points along a pair of sequences evolving under the SMC'. Using our Markov process, we derive a number of new quantities related to the pairwise SMC', thereby analytically quantifying for th...

متن کامل

An efficient analytical solution for nonlinear vibrations of a parametrically excited beam

An efficient and accurate analytical solution is provided using the homotopy-Pade technique for the nonlinear vibration of parametrically excited cantilever beams. The model is based on the Euler-Bernoulli assumption and includes third order nonlinear terms arisen from the inertial and curvature nonlinearities. The Galerkin’s method is used to convert the equation of motion to a nonlinear ordin...

متن کامل

Exploring population genetic models with recombination using efficient forward-time simulations.

We present an exact forward-in-time algorithm that can efficiently simulate the evolution of a finite population under the Wright-Fisher model. We used simulations based on this algorithm to verify the accuracy of the ancestral recombination graph approximation by comparing it to the exact Wright-Fisher scenario. We find that the recombination graph is generally a very good approximation for mo...

متن کامل

Antimicrobial test of five ethnomedicinal plants in an ancestral forest area

The basic premise of this research was to assess the ethnomedicinal uses of plants in an ancestral forest area at Naawan, Misamis Oriental and determine its inhibition effect against bacterial strains. The assessment of plants was conducted using the transect-plot method. Ethnomedicinal uses and the mode of preparations were obtained using a semi-structured interview questionnaire. Five ethnome...

متن کامل

Fixation probability in a two-locus model by the ancestral recombination-selection graph.

We use the ancestral influence graph (AIG) for a two-locus, two-allele selection model in the limit of a large population size to obtain an analytic approximation for the probability of ultimate fixation of a single mutant allele A. We assume that this new mutant is introduced at a given locus into a finite population in which a previous mutant allele B is already segregating with a wild type a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015